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1. Origin and properties of prompt gamma rays 

2. Prompt-gamma based methods of range assessment  

3. Recent results obtained at OncoRay 

4. Prospects for 4D treatment verification  
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(Motivation covered by other talks.) 
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Origin and properties of prompt gamma rays 

• Prompt gammas 

– Resulting from nuclear interactions  

of beam particles with tissue 

 

 

 

 

– Emission spectrum extends up to 7…8 MeV 

with prominent lines at 4.45 and 6.13 MeV 

– Emission spectrum depends on the  

proton energy (penetration depth) 
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Origin and properties of prompt gamma rays 

• Prompt gammas 
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of beam particles with tissue 
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• Options for  

range verification 

 

 

 

 

 

 

 

 Prompt gamma  

spectroscopy  (PGS) 

 Prompt gamma  

imaging   (PGI) 
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• Options for  

range verification 

 

 

 

 

 

 

 

 Prompt gamma  

spectroscopy  (PGS) 

 Prompt gamma  

imaging   (PGI) 

 Prompt gamma  

timing   (PGT) 

 

G. Pausch  4D  Treatment Planning Workshop, Dresden, November 27, 2015  



• Idea 

 Emission pattern of prompt gamma rays is  

correlated with dose deposition 

 Imaging the prompt gamma emissions 

means imaging the dose deposition  

 Prompt gamma-ray timing (PGT) 

 Spatial information from timing 

Prompt gamma imaging (PGI) 

Fiedler and Mueller et al.,  

2011 IEEE NSS/MIC  

Dose  

deposition 

Gamma 

emission 

Stichelbaut and Jongen, PTCOG 2003  
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• Idea 

 Emission pattern of prompt gamma rays is  

correlated with dose deposition 

 Imaging the prompt gamma emissions 

means imaging the dose deposition 

• Can we deploy common gamma cameras  

as used in nuclear medicine? 

Prompt gamma imaging (PGI) 

Gamma 

emission 

Gamma 

camera 
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• Idea 

 Emission pattern of prompt gamma rays is  

correlated with dose deposition 

 Imaging the prompt gamma emissions 

means imaging the dose deposition 

• Can we deploy common gamma cameras  

as used in nuclear medicine?   No. 

Prompt gamma imaging (PGI) 

? 
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• Idea 

 Emission pattern of prompt gamma rays is  

correlated with dose deposition 

 Imaging the prompt gamma emissions 

means imaging the dose deposition 

• Options 

 Passively collimated systems 

with thick collimators 

 Knife-edge collimator 

 Multi-slat collimator   

 

 Electronically collimated systems 

 Compton camera 

 Compton electron tracking  

 

 

Prompt gamma imaging (PGI) 
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• Pinhole concept 

 

 

• Knife-edge collimator (IBA, …) 

 Knife-edge slit collimator + imaging detector 

 Prototype available, clinical tests performed 

 

PGI with passive collimation 
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• Multi-hole concept 

 

 

• Multi-slat collimator (Coimbra, Delft, …) 

 Multi-slat collimator + imaging detector 

 Modeling 

 

PGI with passive collimation 

Cambraia Lopes et al., IEEE NSS/MIC 2012 

2D  1D imaging but improved efficiency 
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• Multi-hole concept 

 

 

• Multi-slat collimator (Lyon, …) 

 Multi-slat collimator + imaging detector 

 Modeling + measurements with single detector elements 

 

PGI with passive collimation 

Pinto et al., PMB 59 (2014) 7653   

2D  1D imaging but improved efficiency 
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• Compton camera concept 

 

PGI with electronic collimation 

Everett et al., Proc. IEE 124 (1977) 995 

E 
E´ 

 
Ee = E – E´ 
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• Compton camera concept 

 Scatter plane(s) + absorber plane 

 Measure deposited energies and interaction positions 

 Each valid event defines a cone 

PGI with electronic collimation 
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Courtesy  of  

C. Golnik and  S. Schoene, 2013 
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• Compton camera concept 

 Scatter plane(s) + absorber plane 

 Measure deposited energies and interaction positions 

 Each valid event defines a cone 

 Superposition of many cones …  

PGI with electronic collimation 
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• Compton camera concept 

 Scatter plane(s) + absorber plane 

 Measure deposited energies and interaction positions 

 Each valid event defines a cone 

 Superposition of many cones … 

PGI with electronic collimation 
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• Compton camera concept 

 Scatter plane(s) + absorber plane 

 Measure deposited energies and interaction positions 

 Each valid event defines a cone 

 Superposition of many cones + image reconstruction (MLEM) 

  3D Image of the source 

PGI with electronic collimation 
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Courtesy  of  

C. Golnik and  S. Schoene, 2013 
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• Compton camera concepts for prompt gamma imaging: 

Various approaches differing in the detectors design 

 Dresden: CZT + segmented LSO/BGO 

 

 

 

PGI with electronic collimation 

23 

22Na point source 

Kormoll et al., NIM A626-627 (2011) 113  

Kormoll et al., IEEE NSS/MIC 2013  
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• Compton camera concepts for prompt gamma imaging: 

Various approaches differing in the detectors design 

 Dresden: CZT + segmented LSO/BGO 

 

 

 

PGI with electronic collimation 
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4.45 MeV gamma „point“ source 

Kormoll et al., NIM A626-627 (2011) 113  

Kormoll et al., IEEE NSS/MIC 2013  

4.45 MeV  gamma point source 
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• Compton camera concepts for prompt gamma imaging: 

Various approaches differing in the detectors design 

 Dresden: CZT + segmented LSO/BGO 

 Munich: double-sided Si strip detectors + monolithic LaBr3  

 

 

 

PGI with electronic collimation 
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Thirolf et al., NN 2015 
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• Compton camera concepts for prompt gamma imaging: 

Various approaches differing in the detectors design 

 Dresden: CZT + segmented LSO/BGO 

 Munich: double-sided Si strip detectors + monolithic LaBr3 

 Lyon: double-sided Si strip detectors + segmented BGO 

 

 

 

PGI with electronic collimation 
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Krimmer et al., NIM A787 (2015) 98 
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• Compton camera concepts for prompt gamma imaging: 

Various approaches differing in the detectors design 

 Dresden: CZT + segmented LSO/BGO 

 Munich: double-sided Si strip detectors + monolithic LaBr3 

 Lyon: double-sided Si strip detectors + segmented BGO 

 Valencia: monolithic LaBr3 + monolithic LaBr3 

 

 

 

PGI with electronic collimation 
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Llosa et al., NIM A718 (2013) 130 

22Na point source 
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• Compton camera concepts for prompt gamma imaging: 

Various approaches differing in the detectors design 

 Dresden: CZT + segmented LSO/BGO 

 Munich: double-sided Si strip detectors + monolithic LaBr3 

 Lyon: double-sided Si strip detectors + segmented BGO 

 Valencia: monolithic LaBr3 + monolithic LaBr3 

 Baltimore: multistage CZT based on POLARIS 

 

 

 

PGI with electronic collimation 
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McCleskey et al., NIM A785 (2015) 163 

Polf et al., PMB 60 (2015) 7085 
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• Compton camera concepts for prompt gamma imaging: 

Various approaches differing in the detectors design 

• Results 

 Imaging of radioactive sources (22Na) 

 Imaging of monoenergetic 4.45 MeV gamma rays 

~ Imaging of proton-induced prompt gamma rays  

at long exposures and very low beam currents 

 PGI with clinical beam currents and exposure times 

 

 

 

 

PGI with electronic collimation 

29 

Estimate 

Protons per PBS spot up to 108 

Scatter detector size 

and distance from isocenter 

  55 cm2 

25 cm 

Camera efficiency *) 1.210-3 

Usable events per PBS spot  50 

Scatter detector trigger rate **)  3106 

*) measured / scaled for a CZT-BGO setup; 

    Golnik, PhD thesis, 2015 (unpublished) 
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**) conservative estimate considering the minimum 

     interaction probability of gammas in 5mm CZT 



• Compton camera concepts for prompt gamma imaging: 

Various approaches differing in the detectors design 

• Results 

 Imaging of radioactive sources (22Na) 

 Imaging of monoenergetic 4.45 MeV gamma rays 

~ Imaging of proton-induced prompt gamma rays  

at long exposures and very low beam currents 

 PGI with clinical beam currents and exposure times 

 

• Applicability basically biased by 

 Event statistics (few usable events per target volume element) 

 Detector load  (limits size of detectors and camera) 

 Load asymmetry (thin scatter detectors, thick absorber detectors) 

 

• Are there simpler/cheaper solutions? 
 

 
 

 

PGI with electronic collimation 
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• Idea 

 Emission spectrum of prompt gamma rays is correlated with the  

residual particle energy (range) 

 Spectroscopy of prompt gamma rays from a given depth 

discloses the residual range 

Prompt gamma spectroscopy (PGS) 

Verburg and Seco, PMB 59 (2014) 7089  
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• Idea 

 Emission spectrum of prompt gamma rays is correlated with the  

residual particle energy (range) 
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discloses the residual range 

Prompt gamma spectroscopy (PGS) 
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• Idea 

 Emission spectrum of prompt gamma rays is correlated with the  

residual particle energy (range) 

 Spectroscopy of prompt gamma rays from a given depth 

discloses the residual range 

Prompt gamma spectroscopy (PGS) 
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• Idea 

 Emission spectrum of prompt gamma rays is correlated with the  

residual particle energy (range) 

 Spectroscopy of prompt gamma rays from a given depth 

discloses the residual range 

• Procedure 

 Focus a collimated  

spectroscopic detector  

on the last few millimeters 

of beam range 

 Measure distinct 

line intensity ratios 

• Challenge 

 Achievable statistics 

 to be combined with 

multi-slat concept?  

 

Prompt gamma spectroscopy (PGS) 
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• Idea 

 Emission time of prompt gamma rays is correlated with the stopping time  

of particles in tissue and thus with the stopping distance (range) 

 Timing spectroscopy of prompt gamma rays discloses the particle range 

Prompt gamma timing (PGT) 

Golnik et al., PMB 59 (2014) 5399 
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Pausch et al., SCINT 2015 
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• Idea 

 Emission time of prompt gamma rays is correlated with the stopping time  

of particles in tissue and thus with the stopping distance (range) 

 Timing spectroscopy of prompt gamma rays discloses the particle range 

Prompt gamma timing (PGT) 

Golnik et al., PMB 59 (2014) 5399 

36 

Hueso González et al., PMB 60 (2015) 6247 

230 MeV protons 

PMMA + air gaps 
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• Idea 

 Emission time of prompt gamma rays is correlated with the stopping time  

of particles in tissue and thus with the stopping distance (range) 

 Timing spectroscopy of prompt gamma rays discloses the particle range 

• Procedure 

 Put timing detectors close to the target 

 Measure timing spectra 

• Advantage and challenge 

 Uncollimated detector 

 Statistics only limited by tolerable  

detector load and DACQ throughput   

 Fast energy and timing spectroscopy  

at about 1 Mcps throughput rates 

and up to 10 Mcps detector load 

 

Prompt gamma timing (PGT) 

Golnik et al., PMB 59 (2014) 5399 

37 

Pausch et al.,  

paper accepted for publication in IEEE TNS, 2015 
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• PGT hardware 

 Detection of  5 mm range deviations in single pencil beam spots  

 Maximum throughput to collect the statistics needed with few (2-4) detectors 

State of the art in PGT 

38 

Pausch et al., paper accepted for publication in IEEE TNS, 2015 

Target U100 - Parameters and Features 

Features Fast timing and energy spectrometer 

List mode and spectrum (1D, 2D) output 

14-pin plug-on PMT connector 

Ethernet featuring POE 

Timing resolution < 200 ps (FWHM) with CeBr3 detector 

Dynamic range > 1:1.000 (10 keV … 10 MeV)  

Throughput up to ~1 Mcps (spectroscopy, list mode) 
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• PGT hardware 

 Detection of  5 mm range deviations in single pencil beam spots  

 Maximum throughput to collect the statistics needed with few (2-4) detectors 

 Test at OncoRay, “dose cube” PBS plan (1 Gy) 

State of the art in PGT 

39 

Petzoldt et al., unpublished data 
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• PGT hardware 

 Detection of  5 mm range deviations in single pencil beam spots  

 Maximum throughput to collect the statistics needed with few (2-4) detectors 

 Test at OncoRay, “dose cube” PBS plan (1 Gy) 

State of the art in PGT 
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• PGT hardware 
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 Maximum throughput to collect the statistics needed with few (2-4) detectors 

 Test at OncoRay, “dose cube” PBS plan (1 Gy) 

State of the art in PGT 
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• PGT hardware 

 Detection of  5 mm range deviations in single pencil beam spots  

 Maximum throughput to collect the statistics needed with few (2-4) detectors 

 Test at OncoRay, “dose cube” PBS plan (1 Gy) 

State of the art in PGT 
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• PGT hardware 

 Detection of  5 mm range deviations in single pencil beam spots  

 Maximum throughput to collect the statistics needed with few (2-4) detectors 

 Test at OncoRay, “dose cube” PBS plan (1 Gy) 

State of the art in PGT 
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• PGT hardware 
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 Test at OncoRay, “dose cube” PBS plan (1 Gy) 
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 This is in accordance with our estimates and design goals. 
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2.841 entries 

1 PBS spot 

1 detector  
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Pausch et al., paper accepted for publication in IEEE TNS, 2015 

Petzoldt et al., unpublished data 



• Prompt gamma timaging 

 Proton beam scanning of a structured PMMA target at OncoRay 

to explore imaging capabilities of PGT 

 PGT spectra measured and corrected  

for RF-bunch phase shifts, target absorption, and solid angle variation 
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• Prompt gamma timaging 

 Proton beam scanning of a structured PMMA target at OncoRay 

to explore imaging capabilities of PGT 

 PGT spectra measured and corrected  

for RF-bunch phase shifts, target absorption, and solid angle variation 

 Difference of the measured to a  

reference distribution is calculated 
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 Proton beam scanning of a structured PMMA target at OncoRay 

to explore imaging capabilities of PGT 
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for RF-bunch phase shifts, target absorption, and solid angle variation 

 Difference of the measured to a  
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First prompt-gamma based image 

of target inhomogeneities and 

resulting proton beam overranges 

ever made! 
 

Not a clinical scenario:  

High dose, maximum beam energy, 

long exposure (minutes per “spot”) 



• OncoRay has operated / tested the IBA slit camera prototype  

since Sept 2014 

• First clinical application in Aug 2015 

 H&N patient, DS, 3 fields, proton boost 

 Inter-fractional treatment verification 

Barczyk, Priegnitz et al., submitted to PMB, 2015 

Richter et al., submitted to Radiother Oncol, 2015 
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ΔR= [-2.0 mm,1.3 mm] 
consistent with control-CT based  

dose-recalculation 

Barczyk, Priegnitz et al., submitted to PMB, 2015 

Richter et al., submitted to Radiother Oncol, 2015 
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1. All PG methods could provide accurate beam timing information 

 

 

 

 

 

 

 

 

 Each PBS spot can be exactly allocated in time 

 If synchronized with motion monitoring, this provides  

the exact motion phase of spot delivery 

 If 4D CT and motion model are available, this allows calculating the 3D dose 

deposition for each individual PBS spot after the treatment 

(supposed that the lateral spot positions of the full sequence are known) 

Prospects for 4D treatment verification 
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1. All PG methods could provide accurate beam timing information 

 Post-treatment 3D dose evaluation 

2. Some methods could provide range verification per PBS spot 

 IBA slit camera (sensitivity study to setup errors in a realistic PBS plan): 

 

 

 

 

 

 

 

 

 PGT (estimates supposing 4 of the existing hardware units): 

R  5 mm for PBS spots with  108 protons    

 This allows verifying the 3D dose deposition for each individual PBS spot  
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53 G. Pausch  4D  Treatment Planning Workshop, Dresden, November 27, 2015  

Janssens et al., accepted for publication in  

Radiother Oncol, 2015 

 



1. All PG methods could provide accurate beam timing information 

 Post-treatment 3D dose evaluation 

2. Some methods could provide range verification per PBS spot 

 Post-treatment 3D dose verification 

3. PGT could provide beam position information per PBS spot 

 PGT spectrum comprises 

• Proton stopping time 

• Prompt gamma TOF 
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1. All PG methods could provide accurate beam timing information 

 Post-treatment 3D dose evaluation 

2. Some methods could provide range verification per PBS spot 

 Post-treatment 3D dose verification 

3. PGT could provide beam position information per PBS spot 

 PGT spectrum comprises 

• Proton stopping time 

• Prompt gamma TOF 

 Use of multiple (at least 4) 

 PGT detection units 

• Improved statistics per spot 

• TOF component  

discloses beam position  
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• Prompt gamma rays (PG) are appropriate probes for range assessment in PT. 

• So far, none of the electronically collimated PG imaging (PGI) systems under 

development could demonstrate imaging under treatment conditions. 

“Simpler” approaches seem more promising. 

• So far, the passively collimated IBA knife-edge  

slit camera is the only PGI system with  

proven clinical applicability. 

• PG timing (PGT) and spectroscopy (PGS) are  

promising, inexpensive alternatives to PGI.  

Clinical tests are in sight. 

• PG measurements, combined with 4D CT  

and motion monitoring, could provide data  

for 3D dose re-calculation after treatments.  

• PGI and PGT could even provide range verification for (strong) PBS spots. 

• OncoRay is on the way to translating PGI and PGT into clinical practice.  
 

Summary and conclusions 
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Thank you for your attention.  


