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Origin and properties of prompt gamma rays

*  Prompt gammas

— Resulting from nuclear interactions
of beam particles with tissue
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— Emission spectrum extends up to 7...8 MeV
with prominent lines at 4.45 and 6.13 MeV

— Emission spectrum depends on the
proton energy (penetration depth)
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Origin and properties of prompt gamma rays

*  Prompt gammas

— Resulting from nuclear interactions
of beam particles with tissue
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-

— Emission spectrum extends up to 7...8 MeV
with prominent lines at 4.45 and 6.13 MeV

— Emission spectrum depends on the
proton energy (penetration depth)
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— Strong spatial correlation of gamma emissions
with dose deposition (for 3-6 MeV gammas)
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Origin and properties of prompt gamma rays N

*  Prompt gammas

— Resulting from nuclear interactions
of beam particles with tissue
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— Emission spectrum extends up to 7...8 MeV
with prominent lines at 4.45 and 6.13 MeV

— Emission spectrum depends on the
proton energy (penetration depth)

— Strong spatial correlation of gamma emissions
with dose deposition (for 3-6 MeV gammas)

— Emission is time-correlated with the proton
passage through matter (tissue)
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Origin and properties of prompt gamma rays <[Rnﬂay

 Prompt gammas * Options for

— Resulting from nuclear interactions range verification
of beam particles with tissue
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— Emission spectrum extends up to 7...8 MeV
with prominent lines at 4.45 and 6.13 MeV

— Emission spectrum depends on the
proton energy (penetration depth)

— Strong spatial correlation of gamma emissions > Prompt gamma
with dose deposition (for 3-6 MeV gammas) imaging (PGI)

— Emission is time-correlated with the proton
passage through matter (tissue)
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 Prompt gammas * Options for

— Resulting from nuclear interactions range verification

of beam particles with tissue
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— Emission spectrum extends up to 7...8 MeV

with prominent lines at 4.45 and 6.13 MeV
— Emission spectrum depends on the > Prompt gamma

proton energy (penetration depth) spectroscopy (PGS)
— Strong spatial correlation of gamma emissions > Prompt gamma

with dose deposition (for 3-6 MeV gammas) imaging (PGI)

— Emission is time-correlated with the proton
passage through matter (tissue)

G. Pausch ¢ 4D Treatment Planning Workshop, Dresden, November 27, 2015



Origin and properties of prompt gamma rays e

g ncoRay®
 Prompt gammas * Options for

— Resulting from nuclear interactions range verification

of beam particles with tissue
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— Emission spectrum extends up to 7...8 MeV

with prominent lines at 4.45 and 6.13 MeV
— Emission spectrum depends on the > Prompt gamma

proton energy (penetration depth) spectroscopy (PGS)
— Strong spatial correlation of gamma emissions > Prompt gamma

with dose deposition (for 3-6 MeV gammas) imaging (PGI)
— Emission is time-correlated with the proton > Prompt gamma

passage through matter (tissue) timing (PGT)
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Prompt gamma imaging (PGI) <[Rnﬂay

e J|dea Stichelbaut and Jongen, PTCOG 2003

— Emission pattern of prompt gamma rays is
correlated with dose deposition

— Imaging the prompt gamma emissions
means imaging the dose deposition

Dose
deposition

Fiedler and Mueller et al.,
2011 IEEE NSS/MIC
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Prompt gamma imaging (PGI) <®,Ray

e J|dea Stichelbaut and Jongen, PTCOG 2003

— Emission pattern of prompt gamma rays is
correlated with dose deposition

— Imaging the prompt gamma emissions
means imaging the dose deposition

emission

Gamma
camera
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Prompt gamma imaging (PGI) <[}mﬂay

e J|dea Stichelbaut and Jongen, PTCOG 2003

— Emission pattern of prompt gamma rays is
correlated with dose deposition

— Imaging the prompt gamma emissions
means imaging the dose deposition

« Canwe deploy common gamma cameras Gamma

emission

as used in nuclear medicine?

Gamma
camera

G. Pausch ¢ 4D Treatment Planning Workshop, Dresden, November 27, 2015



Prompt gamma imaging (PGI) <®,Ray

e J|dea Stichelbaut and Jongen, PTCOG 2003

— Emission pattern of prompt gamma rays is
correlated with dose deposition

— Imaging the prompt gamma emissions
means imaging the dose deposition

« Can we deploy common gamma cameras Procmpis
as used in nuclear medicine?

Lead
collimator
tubes

Gamma
emitter
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Prompt gamma imaging (PGI)

Idea Stichelbaut and Jongen, PTCOG 2003

— Emission pattern of prompt gamma rays is
correlated with dose deposition

— Imaging the prompt gamma emissions
means imaging the dose deposition

Can we deploy common gamma cameras
as used in nuclear medicine? No.
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Prompt gamma imaging (PGI) <[}mﬂay

e J|dea Stichelbaut and Jongen, PTCOG 2003

— Emission pattern of prompt gamma rays is
correlated with dose deposition

— Imaging the prompt gamma emissions
means imaging the dose deposition

* Options
— Passively collimated systems
with thick collimators
= Knife-edge collimator
= Multi-slat collimator

— Electronically collimated systems
= Compton camera
= Compton electron tracking

G. Pausch ¢ 4D Treatment Planning Workshop, Dresden, November 27, 2015



PGl with passive collimation

* Pinhole concept

. 2D - 1D imaging but improved efficiency

« Knife-edge collimator (IBA, ...)
— Khnife-edge slit collimator + imaging detector
— Prototype available, clinical tests performed

Beam axis (cm)
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Smeets et al.,, PMB 57 (2012) 3371
Perali et al., PMB 59 (2014) 5849
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PGl with passive collimation <®,Ray@

* Multi-hole concept
. 2D - 1D imaging but improved efficiency

* Multi-slat collimator (Coimbra, Delft, ...)
— Multi-slat collimator + imaging detector

— Modeling
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PGl with passive collimation

* Multi-hole concept

. 2D - 1D imaging but improved efficiency

« Multi-slat collimator (Lyon, ...)
— Multi-slat collimator + imaging detector
— Modeling + measurements with single detector elements
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- Neutron-related events
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PGl with electronic collimation <®,Ray

« Compton camera concept

Gamma-radiation imaging system based on oA
the Compton effect ;

Everett et al., Proc. IEE 124 (1977) 995

Fig. 1
Ellipses

a Generation of ellipse on image plane
b Multiple ellipses from single emission point
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PGI with electronic collimation

Compton camera concept

— Scatter plane(s) + absorber plane

— Measure deposited energies and interaction positions
Each valid event defines a cone

y [mm]

DET1 DET2
—-60 —-40-20 0 20 40 60

X [mm]

Courtesy of
C. Golnik and S. Schoene, 2013
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PGI with electronic collimation

« Compton camera concept

— Scatter plane(s) + absorber plane

— Measure deposited energies and interaction positions
— Each valid event defines a cone

— Superposition of many cones ...

y [mm]

-60 -40-20 0 20 40 60
X [mm]

Courtesy of
C. Golnik and S. Schoene, 2013
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PGI with electronic collimation

« Compton camera concept

— Scatter plane(s) + absorber plane

— Measure deposited energies and interaction positions
— Each valid event defines a cone

— Superposition of many cones ...

y [mm]

-60 -40-20 0 20 40 60
X [mm]

Courtesy of
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PGI with electronic collimation

« Compton camera concept

— Scatter plane(s) + absorber plane

— Measure deposited energies and interaction positions
— Each valid event defines a cone

— Superposition of many cones + image reconstruction (MLEM)

- 3D Image of the source
E!

DET1 DET2
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Courtesy of
C. Golnik and S. Schoene, 2013
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PGl with electronic collimation <Umﬂay

« Compton camera concepts for prompt gamma imaging:
Various approaches differing in the detectors design

— Dresden: CZT + segmented LSO/BGO

Kormoll et al., NIM A626-627 (2011) 113
Kormoll et al., IEEE NSS/MIC 2013

22Na point source
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PGI with electronic collimation

« Compton camera concepts for prompt gamma imaging:
Various approaches differing in the detectors design

— Dresden: CZT + segmented LSO/BGO

Kormoll et al., IEEE NSS/MIC 2013

4.45 MeV gamma point source

y (mm)

_8280 -60 -40 =20 0 20 40 60

X% (mm)

G. Pausch ¢ 4D Treatment Planning Workshop, Dresden, November 27, 2015

Kormoll et al., NIM A626-627 (2011) 113
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PGI with electronic collimation

« Compton camera concepts for prompt gamma imaging:
Various approaches differing in the detectors design

— Dresden: CZT + segmented LSO/BGO
— Munich:  double-sided Si strip detectors + monolithic LaBr,

Absorber:
LaBr, Scatterer/Tracker:
(+ PMT) DSSSD

iy
0)’0
€y ch

Thirolf et al., NN 2015
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« Compton camera concepts for prompt gamma imaging:
Various approaches differing in the detectors design
— Dresden: CZT + segmented LSO/BGO

— Munich:  double-sided Si strip detectors + monolithic LaBr,
— Lyon: double-sided Si strip detectors + segmented BGO

Krimmer et al., NIM A787 (2015) 98
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« Compton camera concepts for prompt gamma imaging:
Various approaches differing in the detectors design

— Dresden: CZT + segmented LSO/BGO

— Munich:  double-sided Si strip detectors + monolithic LaBr,
— Lyon: double-sided Si strip detectors + segmented BGO
— Valencia: monolithic LaBr; + monolithic LaBr,

22Na point source

Llosa et al., NIM A718 (2013) 130
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PGl with electronic collimation <Umﬂay

« Compton camera concepts for prompt gamma imaging:
Various approaches differing in the detectors design

— Dresden: CZT + segmented LSO/BGO

— Munich:  double-sided Si strip detectors + monolithic LaBr,
— Lyon: double-sided Si strip detectors + segmented BGO
— Valencia: monolithic LaBr; + monolithic LaBr,

— Baltimore: multistage CZT based on POLARIS

0
/I'Va[er phantom
Point source o

I—Q +2

McCleskey et al., NIM A785 (2015) 163
Polf et al., PMB 60 (2015) 7085
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« Compton camera concepts for prompt gamma imaging:
Various approaches differing in the detectors design

« Results

v Imaging of radioactive sources (*°Na)
v Imaging of monoenergetic 4.45 MeV gamma rays
~ Imaging of proton-induced prompt gamma rays
at long exposures and very low beam currents
x PGl with clinical beam currents and exposure times

esmae

Protons per PBS spot up to 108
Scatter detector size 5x5 cm?
and distance from isocenter 25cm

. s #) 3 *) measured / scaled for a CZT-BGO setup;
Camera efficiency 1.2x10 Golnik, PhD thesis, 2015 (unpublished)
Usable events per PBS spot oC 50

. o 6 **) conservative estimate considering the minimum

Scatter detector trigger rate ) * 3x10 interaction probability of gammas in 5Smm CZT

G. Pausch ¢ 4D Treatment Planning Workshop, Dresden, November 27, 2015
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« Compton camera concepts for prompt gamma imaging:
Various approaches differing in the detectors design

« Results

v Imaging of radioactive sources (*°Na)
v Imaging of monoenergetic 4.45 MeV gamma rays
~ Imaging of proton-induced prompt gamma rays
at long exposures and very low beam currents
x PGl with clinical beam currents and exposure times

« Applicability basically biased by

— Event statistics (few usable events per target volume element)
— Detector load (limits size of detectors and camera)
— Load asymmetry (thin scatter detectors, thick absorber detectors)

* Are there simpler/cheaper solutions?

G. Pausch ¢ 4D Treatment Planning Workshop, Dresden, November 27, 2015
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Prompt gamma spectroscopy (PGS) <[R,,Ray

e J|dea Verburg and Seco, PMB 59 (2014) 7089
— Emission spectrum of prompt gamma rays is correlated with the
residual particle energy (range)

— Spectroscopy of prompt gamma rays from a given depth
discloses the residual range
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Prompt gamma spectroscopy (PGS)

e J|dea Verburg and Seco, PMB 59 (2014) 7089

Counts /10° protons

Emission spectrum of prompt gamma rays is correlated with the
residual particle energy (range)

Spectroscopy of prompt gamma rays from a given depth
discloses the residual range
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e J|dea Verburg and Seco, PMB 59 (2014) 7089

— Emission spectrum of prompt gamma rays is correlated with the
residual particle energy (range)

— Spectroscopy of prompt gamma rays from a given depth
discloses the residual range
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Prompt gamma spectroscopy (PGS)

ldea

Verburg and Seco, PMB 59 (2014) 7089

residual particle energy (range)

— Spectroscopy of prompt gamma rays from a given depth
discloses the residual range

Procedure

— Focus a collimated
spectroscopic detector

on the last few millimeters

of beam range

— Measure distinct
line intensity ratios

Challenge

— Achievable statistics

— to be combined with
multi-slat concept?

Counts /10° protons

G. Pausch ¢ 4D Treatment Planning Workshop, Dresden, November 27, 2015
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Prompt gamma timing (PGT)

e J|dea Golnik et al., PMB 59 (2014) 5399

— Emission time of prompt gamma rays is correlated with the stopping time
of particles in tissue and thus with the stopping distance (range)

— Timing spectroscopy of prompt gamma rays discloses the particle range

Particle
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Particle beam . p
Yo
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Pausch et al., SCINT 2015
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Prompt gamma timing (PGT) <®,Ray@
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e J|dea Golnik et al., PMB 59 (2014) 5399

— Emission time of prompt gamma rays is correlated with the stopping time
of particles in tissue and thus with the stopping distance (range)

— Timing spectroscopy of prompt gamma rays discloses the particle range
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e J|dea Golnik et al., PMB 59 (2014) 5399

— Emission time of prompt gamma rays is correlated with the stopping time
of particles in tissue and thus with the stopping distance (range)

— Timing spectroscopy of prompt gamma rays discloses the particle range

* Procedure

— Put timing detectors close to the target
— Measure timing spectra

« Advantage and challenge
— Uncollimated detector
— Statistics only limited by tolerable
detector load and DACQ throughput

— Fast energy and timing spectroscopy
at about 1 Mcps throughput rates
and up to 10 Mcps detector load

Pausch et al.,
paper accepted for publication in IEEE TNS, 2015

G. Pausch ¢ 4D Treatment Planning Workshop, Dresden, November 27, 2015



State of the art in PGT <lﬁmﬂay

° PGT hardware Pausch et al., paper accepted for publication in IEEE TNS, 2015
— Detection of <5 mm range deviations in single pencil beam spots
— Maximum throughput to collect the statistics needed with few (2-4) detectors

Target U100 - Parameters and Features

Features Fast timing and energy spectrometer
List mode and spectrum (1D, 2D) output
14-pin plug-on PMT connector
Ethernet featuring POE

Timing resolution < 200 ps (FWHM) with CeBr; detector
Dynamic range > 1:1.000 (10 keV ... 10 MeV)
Throughput up to ~1 Mcps (spectroscopy, list mode)

G. Pausch ¢ 4D Treatment Planning Workshop, Dresden, November 27, 2015



State of the art iIn PGT

e PGT hardware

Pausch et al., paper accepted for publication in IEEE TNS, 2015

— Detection of <5 mm range deviations in single pencil beam spots
— Maximum throughput to collect the statistics needed with few (2-4) detectors

— Test at OncoRay, “dose cube” PBS plan (1 Gy)

G. Pausch ¢ 4D Treatment Planning Workshop, Dresden, November 27, 2015
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State of the art in PGT

e PGT hardware Pausch et al., paper accepted for publication in IEEE TNS, 2015
— Detection of <5 mm range deviations in single pencil beam spots
— Maximum throughput to collect the statistics needed with few (2-4) detectors
— Test at OncoRay, “dose cube” PBS plan (1 Gy)
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PGT hardware
Detection of <5 mm range deviations in single pencil beam spots

Maximum throughput to collect the statistics needed with few (2-4) detectors
— Test at OncoRay, “dose cube” PBS plan (1 Gy)
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Pausch et al., paper accepted for publication in IEEE TNS, 2015
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State of the art in PGT

e PGT hardware

Pausch et al., paper accepted for publication in IEEE TNS, 2015

— Detection of <5 mm range deviations in single pencil beam spots
— Maximum throughput to collect the statistics needed with few (2-4) detectors

— Test at OncoRay, “dose cube” PBS plan (1 Gy)
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State of the art in PGT <(Rnnay

Dresten

e PGT hardware Pausch et al., paper accepted for publication in IEEE TNS, 2015
— Detection of <5 mm range deviations in single pencil beam spots
— Maximum throughput to collect the statistics needed with few (2-4) detectors
— Test at OncoRay, “dose cube” PBS plan (1 Gy)  Petzoldtetal., unpublished data
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State of the art in PGT <[Roﬂay

e PGT hardware Pausch et al., paper accepted for publication in IEEE TNS, 2015
— Detection of <5 mm range deviations in single pencil beam spots
— Maximum throughput to collect the statistics needed with few (2-4) detectors
— Test at OncoRay, “dose cube” PBS plan (1 Gy)  Petzoldtetal., unpublished data
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State of the art in PGT <[Roﬂay

e PGT hardware Pausch et al., paper accepted for publication in IEEE TNS, 2015
— Detection of <5 mm range deviations in single pencil beam spots
— Maximum throughput to collect the statistics needed with few (2-4) detectors
— Test at OncoRay, “dose cube” PBS plan (1 Gy)  Petzoldtetal., unpublished data

PGT Spot_10 Spot_10
PGT Spot_10 x1 03 Energy vs Time, Spot 10
o . Entries 2841 T ' - " i Enties 7739
35 2.841 entries |Mean  3.739 60— " . , . e Meanx sesale
C RMS  2.249 C W e C | Meany 21980104
- - e e e s 2.389
30:_ 1 gBts StpOt 50-_r"-' " -'I. ,': A ' oo " 'I I \'I:‘..R‘MF.;. 1.4e+04 0
E etector L Loy it KSR
25k SRTERE AR
C A0 i g
20:_ _”' : ' |(|l||'|'\.-|.l"‘ lul"‘I ! Jl L
- 30, R
F £ i "&'“'. LR
e oof \;{,&\M%--ﬁ% i
L 0 v I
10F n S R AT
. C ol
i 10 .'I:.'- \' ' .'I I..‘ \
5 g\: ;Nv ;{ .m?f -’ ﬁ
PR IR I NPT PP I LTI N P Coivty
S R R T

— This is in accordance with our estimates and design goals.
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State of the art in PGT <[R,,Ray
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. Prompt gamma tlmaglng Petzoldt et al., submitted to PMB, 2015

— Proton beam scanning of a structured PMMA target at OncoRay
to explore imaging capabilities of PGT

— PGT spectra measured and corrected
for RF-bunch phase shifts, target absorption, and solid angle variation
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. Prompt gamma tlmaglng Petzoldt et al., submitted to PMB, 2015

— Proton beam scanning of a structured PMMA target at OncoRay
to explore imaging capabilities of PGT
— PGT spectra measured and corrected
for RF-bunch phase shifts, target absorption, and solid angle variation

— Difference of the measured to a
reference distribution is calculated
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State of the art in PGT <lmnﬂav

. Prompt gamma Imaglng Petzoldt et al., submitted to PMB, 2015

— Proton beam scanning of a structured PMMA target at OncoRay
to explore imaging capabilities of PGT

— PGT spectra measured and corrected

— Difference of the measured to a
reference distribution is calculated
and visualized

¥ fom
E100 0.!0 5'.0 10I.0 15I0 QQ.O 25.'0 ! 04
£ f
~ 90 : l 0.3
=
80 ] 0.2
E ; 0.1
7 < 19mm
60 : “ : 00 (large) cavity
50 : i 01
40 02 < 9mm
A 03 (small) cavity
30
1 i L 1 1 i I 04 213mm
80 05 10 15 20 25 30 35 filled cavity
Time (x) / ns (,marrowbone”)

G. Pausch ¢ 4D Treatment Planning Workshop, Dresden, November 27, 2015



State of the art in PGT )

g JncoRay*
° Prompt gamma Imaglng Petzoldt et al., submitted to PMB, 2015
— Proton beam scanning of a structured PMMA target at OncoRay
to explore imaging capabilities of PGT
— PGT spectra measured and corrected
— Difference of the measured to a
reference distribution is calculated
and visualized
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First clinical application of PGI <[}mﬂay

« OncoRay has operated / tested the IBA slit camera prototype
since Sept 2014 Barczyk, Priegnitz et al., submitted to PMB, 2015
° FirSt Clinical application in Aug 2015 Richter et al., submitted to Radiother Oncol, 2015
— H&N patient, DS, 3 fields, proton boost
— Inter-fractional treatment verification

G. Pausch ¢ 4D Treatment Planning Workshop, Dresden, November 27, 2015



First clinical application of PGI <@0Ray.

« OncoRay has operated / tested the IBA slit camera prototype
since Sept 2014 Barczyk, Priegnitz et al., submitted to PMB, 2015

° First Clinical applicatiOn in Aug 2015 Richter et al., submitted to Radiother Oncol, 2015
— H&N patient, DS, 3 fields, proton boost £ AN P |

. L S0 O o
— Inter-fractional treatment verification = f SN s |
n 45 Fx6 |-

‘E [ Fx7 |7

y 3 30k \ ]

20 40 60 _ 80 100

10} Smoothed with Gaussian

...................

0 20 40 60 80 100
Position [mm]

AR=[-2.0 mm,1.3 mm]

consistent with control-CT based
dose-recalculation

G. Pausch ¢ 4D Treatment Planning Workshop, Dresden, November 27, 2015



Prospects for 4D treatment verification <[Roﬂay

1. All PG methods could provide accurate beam timing information
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— Each PBS spot can be exactly allocated in time

— If synchronized with motion monitoring, this provides
the exact motion phase of spot delivery

— If 4D CT and motion model are available, this allows calculating the 3D dose
deposition for each individual PBS spot after the treatment
(supposed that the lateral spot positions of the full sequence are known)

G. Pausch ¢ 4D Treatment Planning Workshop, Dresden, November 27, 2015



Prospects for 4D treatment verification <[Rmnay

1. All PG methods could provide accurate beam timing information
— Post-treatment 3D dose evaluation

2. Some methods could provide range verification per PBS spot
— IBA slit camera (sensitivity study to setup errors in a realistic PBS plan):
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— PGT (estimates supposing 4 of the existing hardware units):
AR <5 mm for PBS spots with > 108 protons

— This allows verifying the 3D dose deposition for each individual PBS spot

G. Pausch ¢ 4D Treatment Planning Workshop, Dresden, November 27, 2015



Prospects for 4D treatment verification <[Rnnay

Dresi

1. All PG methods could provide accurate beam timing information
— Post-treatment 3D dose evaluation

2. Some methods could provide range verification per PBS spot
— Post-treatment 3D dose verification

3. PGT could provide beam position information per PBS spot
— PGT spectrum comprises
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* Prompt gamma TOF >
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— Post-treatment 3D dose evaluation
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1. All PG methods could provide accurate beam timing information
— Post-treatment 3D dose evaluation
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Dresi

1. All PG methods could provide accurate beam timing information
— Post-treatment 3D dose evaluation

2. Some methods could provide range verification per PBS spot
— Post-treatment 3D dose verification

3. PGT could provide beam position information per PBS spot
— PGT spectrum comprises

* Proton stopping time
* Prompt gamma TOF
— Use of multiple (at least 4) ‘ at oty
PGT detection units poaricle 2 Particle bean
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Prospects for 4D treatment verification <[Ronay

1. All PG methods could provide accurate beam timing information
— Post-treatment 3D dose evaluation

2. Some methods could provide range verification per PBS spot
— Post-treatment 3D dose verification

3. PGT could provide beam position information per PBS spot
— Post-treatment 3D dose verification
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Summary and conclusions ’@ﬁay@

Prompt gamma rays (PG) are appropriate probes for range assessment in PT.

« So far, none of the electronically collimated PG imaging (PGI) systems under
development could demonstrate imaging under treatment conditions.
“Simpler” approaches seem more promising.

« So far, the passively collimated IBA knife-edge
slit camera is the only PGI system with
proven clinical applicability.

« PG timing (PGT) and spectroscopy (PGS) are
promising, inexpensive alternatives to PGl.
Clinical tests are in sight.

e PG measurements, combined with 4D CT
and motion monitoring, could provide data
for 3D dose re-calculation after treatments.

« PGl and PGT could even provide range verification for (strong) PBS spots.
« OncoRay is on the way to translating PGl and PGT into clinical practice.

Thank you for your attention.



