

How to verify DIR? Can we use DIR in the clinic and for which purpose?

Dave Hawkes, d.hawkes@ucl.ac.uk www.ucl.ac.uk/cmic

Validation of method

- Physical phantoms
- **Digital phantoms**
- **Exogenous fiducials** ullet
- Internal anatomical landmarks
 - Pooling of ground truth data
 - Grand challenges
- Visual Inspection

Verification during intervention/therapy etc

spatting evuous

5 naining:

- Exogenous fiducials
- Internal anatomical landmarks
- understanding limitations Visual Inspection

Experimental validation and clinical evaluation

3

Anthropomorphic phantom: <u>http://medicalphysicsweb.org/cws/article/research/53748</u>

[±]UCL

Alignment of temporal sequences of DCE-MRI

Difference of original images

Free form deformations using B-splines with normalised mutual information as a similarity measure

Difference of aligned images

Rueckert et al IEEE-Trans Med Imag, 1999

From Free-Form Deformation (FFD) to Fast Free-Form Deformation (F³D)

- Update all control points for each resampling
- Parzen Window estimation of Joint Histogram
- Convolution of gradient field of the cost function (NMI)
- Conjugate Gradient
 Optimisation
- 10 fold speed up from CPU to GPU implementation

Open source code available at: http://www.niftk.org

Modat et al, Computer Methods and Programs in Biomedicine, 2010

Whole breast

Schnabel et al IEEE-TMI 2003, Tanner et al Med Phys 2006

TLED-Reg Motivation

• As many atrophy rates as algorithms:

CMIC seminar, 29 october 2008, Marc Modat, m.modat@ucl.ac.uk

UCL

iMRI facility at National Hospital, Queen Square, London

Planning and guiding avoidance of optic radiation Daga, Duncan, Ourselin et al IEEE TMI 2012

Pre-operative image and plan

Intra-operative image

Optic radiation

27% visual field loss

No visual field loss

UCL

Breast Cancer & Clinical Needs

(FP7-ICT-2011-9)

- 78% Patients survive breast cancer for more than 10 years (Cancer Research UK)
- ~20% of patients undergoing lumpectomy have inadequate margins
- ~ 30% of patients suffer from suboptimal or poor aesthetic outcome

[•]UCL

Alignment of 3D prone and supine MR of breast via the unloaded configuration (simulated data)

Eiben et al Annals of Biomed Eng (2015)

Alignment of 3D prone MRI and supine CT of breast via synthetic MRI and the unloaded configuration (real data)

Eiben et al Annals of Biomed Eng (2015)

Surgical Simulator: Registration to 3D reconstructed visible surface

Magnetic Resonance Image (patient prone)

TRE 10.0mm (prone to supine) using user identified points from supine CT

Eiben PhD Thesis Nov 2015

CT SYNTHESIS IN THE HEAD & NECK REGION

- Challenges:
 - 1. Mixture of tissues
 - 2. Wide range of fields of view
 - 3. Large-scale postural changes

2. MULTI-ATLAS CT SYNTHESIS

Burgos et al., EJNMMI 2015

EXAMPLES OF CT SYNTHESIS IN THE HEAD & NECK

- Three pseudo CTs per subject
 - pCT_A, obtained using a single affine between the atlases and target
 - $-pCT_{R}$, obtained using the robust affine

1C

APPLICATION TO RADIOTHERAPY TREATMENT PLANNING

• Case study: dosimetry calculations

1C

- Dose volume histograms (DVH) in the planning target volume (PTV)
- Gamma analysis

DVH of PTV

[•]UCL

Image Directed Biopsy and Partial Prostate Ablation

- Multimodal MR to delineate focal cancer
- Biopsy
- Focal therapy (PDT or HIFU) delivered (via needle or transrectally) with transrectal ultrasound guidance

TRE 1.8mm (RMS) +/- 0.7mm

Clinical trial commenced, > 100 patients

EPSRC, NIHR i4i, Wellcome DoH HICF,

Hu Y, et al IEEE-tMI, 2011 + patent Hu y et al MedIA 2012

PRE-PROCEDURE

UCL

Automatic generation of deformable organ models

Hu et al. Medical Image Analysis, 2012 and patent

Motion compensation in lung radiotherapy

Model error 1.7mm (RMS), slice thickness 1.5mm

McClelland et al Medical Physics 2006

Problem: Significant inter-fractional variation in breathing patterns

McClelland et al Phys Med Biol 2011

Lung registration using the NiftyReg package EMPIRE'10 (workshop at MICCAI 2010) http://empire10.isi.uu.nl

Marc Modat, Jamie McClelland and Sébastien Ourselin Centre for Medical Image Computing, University College London

Lung registration - Pipeline

• Preprocessing (Nifti format and masking)

- 1 global registration step (block-matching)
- 3 local registration step (F³D)

Lung registration - Local registration 3

TRE: landmarks 0.8mm and ranked 4th overall (slightly worse at lung boundaries and fissures)

Lung registration - Computation time

Computation time	CPU-based implementation	GPU-based implementation
Global registration	1.40(0.57)	NA
Local registration 1	1.28(0.47)	1.06(0.41)
Local registration 2	1.32(0.84)	$0.83 \ (0.36)$
Local registration 3	12.25(5.13)	1.56 (0.27)
Folding correction	1.16(0.57)	NA

Table 1: Mean computation time in minutes (and standard deviation) of the different registration stages.

What can still go wrong?

- Sliding of individual lobes
- Loss or gain of significant structure (tumour growth, reopening airways etc)
- Very large intensity changes can still throw the algorithm

In-room stereo video, KV and MV imaging with linac

Updated inter-fraction model from cone-beam CT

Simultaneous extraction of motion parameters and motion compensated cone-beam reconstruction

Original

Original + tumour outline

Synchronised in real-time with intra-fraction 4D skin surfaces (VisionRT)

Martin et al Phys Med Biol 2013

Combining Image Registration, Respiratory Motion Modelling, and Motion Compensated Image Reconstruction

Cine CT data – BH as static reference

McClelland et al WBIR 2014

Reconstruction of 4D MR images from volunteer with normal, irregular breathing

McClelland 2015

[•]UCL

Validation of method

- Digital phantoms
- Physical phantoms
- Exogenous fiducials
- Internal anatomical landmarks
 - Pooling of ground truth data
 - Grand challenges
- Visual Inspection

Verification during intervention/therapy etc

- Exogenous fiducials
- Internal anatomical landmarks
- Visual Inspection

Acknowledgements

- John Hipwell, Lianghao Han, Thomy Mertzanidou, Seb Ourselin, Ninon Burgos, Jorge Cardoso, Marc Modat, Dean Barratt, Yipeng Hu, Jamie McClelland, James Martin, Laura Panagiotaki, Danny Alexander CMIC UCL
- Mark Emberton, Hash Ahmed, Steve Halligan, Shonit Punwani, UCLH
- Mo Keshtgar, Royal Free Hospital
- David Landau, *Guy's & St. Thomas'*, Uwe Oelfke, Steve Webb, *Institute of Cancer Research*
- EPSRC, MRC, Cancer Research UK, TSB/UKTI, NIHR, The Wellcome Trust, DoH, Prostate Cancer UK
- Philips Medical Systems, Siemens, VisionRT, Leica, Brainlab, Elekta,

Thank you

Dave Hawkes

<u>d.hawkes@ucl.ac.uk</u> <u>www.ucl.ac.uk/cmic</u>