Robust planning and margin concepts: What is the way to go?

Mischa Hoogeman

Steven van de Water, Aafke Kraan, Sebastian van der Voort, Zoltan Perko, Sebastiaan Breedveld, Iris van Dam, Charlotte Hartman ...

m.hoogeman@erasmusmc.nl

Contents

- What is the problem?
- Robust planning in IMPT
- A Robustness Recipe for IMPT
- Evaluation, approval, prescription, and reporting of robust treatment plans

WHAT IS THE PROBLEM?

ALL & THE

Intensity-Modulated Proton Therapy

- IMPT:
 - Discrete proton pencil beams
 - Successive delivery
 - Intensity-modulated

S. van de Water

Treatment uncertainties

- IMPT is relatively sensitive to treatment uncertainties:
 - Proton range
 - Patient setup
 - Dose calculation
 - Patient anatomy

S. van de Water and A. Kraan

Dose Degradation in IMPT

Dose Degradation

Planned dose

Delivered dose

A Kraan et al. IJROBP 2013; dx.doi.org/10.1016/j.ijrobp.2013.09.014

IMRT vs. IMPT

IMRT

- Image-guidance!
- Patient setup: in PTV
- Organ motion: in PTV
- Dose calculation: solved
- Intra-fraction interplay: use e.g. double arcs
- Anatomic changes: replanning

IMPT

- Image-guidance!
- Patient setup: ?
- Organ motion: IM
- Dose calculation:
- Intra-fraction interplay: repainting or gating
- Anatomic changes: replanning

PTV margin

shall not be used in PT

Uncertainty

in relative stopping

power

Robust treatment planning

• PTV concept typically used in photons:

PTV margin

S. van de Water

Robust treatment planning

Robust treatment planning should be used for protons:

PRIcoProvinie chuster addition of t

S. van de Water

Robust Treatment Planning

• Robust treatment planning should be used for protons:

Optimize all 'error scenarios' simultaneously

Robust Treatment Planning

• Robust treatment planning should be used for protons:

- Optimize all 'error scenarios' simultaneously
- Optimize worst-case dose values

S. van de Water

Robust Optimization

Recalculated setup error [mm]

Recalculated setup error [mm]

S. van de Water, I van Dam et al.

Issues

- Error scenarios are evaluated separately: no cross terms (i.e. range and setup errors combined)
- Adding more error scenarios is computational intensive
- The magnitude of the error scenario is unknown that is needed to give an adequate treatment under given setup and range error distributions

Increasingly More Robust

Prize of Robustness

LEIDS UNIVERSITAIR MEDISCH CENTRUM

Horizon Scanning Report 2009

ANTCP Based Patient Selection

S. Breedveld and S. van de Water

Study objective

S. van de Water

LU MC Leids Universitair Medisch Centrum

Study objective

- Assuming normally distributed errors (sigma):
 - Systematic setup error (Σ)
 - Random setup error (σ)
 - Systematic range error (R)
- Obtain robustness settings that should result in adequate CTV coverage:
 - setup robustness α mm
 - range robustness β%

Patient group

Unilateral

Bilateral

- Oropharyngeal cancer patients:
 - Training: 2 cases
 - Evaluation: 12 cases

(1 unilateral and 1 bilateral) (6 unilateral and 6 bilateral)

Methods

- Calculate expected CTV coverage for various robustness settings (range and setup) and treatment uncertainties (systematic range and random and systematic setup uncertainties)
- Adequate CTV coverage:
 - V95% **> 98%**
 - -> 98% of the treatments/population

Expected Dose and Treatment Uncertainties

 Accurate estimate of expected dose requires time-consuming Monte-Carlo simulations as each iteration requires a full re-calculation of the dose distribution

• Polynomial Chaos Expansion (PCE):

- Analytical model of the response to uncertainties

Zoltán Perkó et al. Journal of Computational Physics, 260:54-84, 2014

Polynomial Chaos Expansion

- Multi-dimensional polynomial function:
- $\frac{D_{PCE}^{i}(\underline{\xi})}{\swarrow} = \sum_{k=0}^{N} r_{k}^{i} \Psi_{k}(\underline{\xi})$ PCE dose in voxel *i*PCE coefficients (PCCs)

$$\underline{\xi} = (x, y, z, r)$$
setup error range error

- Expected dose for an entire fractionated treatment
 - Systematic setup (μ) and range error (r)
 - Assumes infinite number of fractions

Z. Perko, S. van der Voort et al.

Robustness Recipe

Figure 1. Combinations of systematic (Σ) and random (σ) setup errors that give adequate CTV coverage (V95% \ge 98%) for 98% of the simulated fractionated treatments for a range error (ρ) of 2% for a unilateral and bilateral patient. In each plot different SR and RR settings are shown. The solid round markers show the obtained data, the dashed lines are a quadratic fit.

S. van der Voort et al. DOI: http://dx.doi.org/10.1016/j.ijrobp.2016.02.035

Location of Underdosage

- What is the location of the underdosage in a robustly optimized treatment plan?
 - At the CTV edge or also in the center?

S. van der Voort et al.

100

90

80

70

60

50

40

30

20

10

0

Robust Treatment Plans in Clinical Practice

- How to prescribe/approve/report the dose to a robustly optimized CTV and organs at risk?
 - V95%>98% for each scenario? Is this equivalent to the PTV concept?
- How to evaluate and approve a robust treatment plan?

How to Evaluate a Robust Plan?

THE WAY TO GO

П

Concluding Remarks

- International (ESTRO) guidelines are needed for prescribing/approving/reporting of robust treatment plans
- Those guidelines should be adopted by Treatment Planning Vendors
 - Uniformity in implemented robustness methods
- Probabilistic Planning => no robustness recipes needed

HollandPTC Construction

October 2015 - First patient mid-2017

